SSL Public Key Certificates
Overcoming the man-in-the-middle attack
Summary and Hands-on Guide
peter-thoemmes.org research

© Peter Thoemmes

Weinbergstrasse 3a
D-54441 Ockfen, Germany

December 23, 2011

Abstract

This paper is a summary and a hands-on guide for technical people, who
like to know how SSL public key certificates really work. The aim is to show
the motivation and the complete story behind the idea of a Public Key Infras-
tructure (PKI) using SSL public key certificates. This paper is distributed in
the hope that it will be useful, but WITHOUT ANY WARRANTY, without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Contents

1 General Stuff

2 How is a Public Key Infrastructure setup?
3 How is the certificate created and verified?
4 How is the technical implementation done?
5 Hands-on guide using Linux and OpenSSL

6 Summary

11

1 General Stuff

Before the idea of SSL public key certificates, there was the idea of a key agreement
using an insecure connection. That idea of Diffie and Hellmann was almost perfect.
Never the actual key was transferred, but still after the initial handshake both parties
knew which secret encryption key to use.

Figure 1: Diffie-Hellmann Key Agreement Method

Client Server

Random Number Random Mumber

v Y

i ¢

Public Key Generator Public Key Generator

v Y

!Puh]icKeyO !Puhﬁcfceyo

Secret Key Generator Secret Key Generator

N

Secret key

But that method had and has a weak part: it is possible that a hacker (user
C) hooks into the traffic of client (user A) and server (user B). When A initiates
a conversation, C fetches all messages and pretends to be B. Knowing the key
agreement method, C will send back a public key part, pretending to by B, while
spoofing the address of B, and so A will think that this is user B at the other end of
the line and finally will setup a proper encrypted connection to C. So C will get all
the information meant for B and C will be able to fully decrypt it. This is known
as the man-in-the-middle attack.

To overcome the man-in-the-middle attack, the mechanism of sending the finger-
print of the public part of the RSA host key was introduced. So before the actual
encrypted connection was setup, the user was able to verify the correctness of the
identity of the other user by cross-checking the fingerprint. To do so, any kind of
manual transmission of the authentic fingerprint is required before, possibly by a

phone call to the other user. That is a fairly safe method, but time-consuming and of
course it needs to be understood by the user. Typically the remote user is a server,
which is maintained by an administrator, who might be able to pick up the phone
and read out the server’s RSA host key fingerprint. If the server runs OpenSSL, he
can read the fingerprint like this:

$ ssh-keygen -1 -f /etc/ssh/ssh_host_rsa_key.pub
2048 c3:f6:2a:01:cd:39:61:7f:df:53:57:3e:d8:e4:99:36 /etc/...st_rsa_key.pub

As many users do not understand that fingerprint thing, and as it is way to
complicated if many servers need to be contacted using a secured encrypted line, a
new and fully automated method was developed: PKI (Public Key Infrastructure).
PKI is an automated solution to overcome the man-in-the-middle attack problem.
Using that method a server provides its public key as it did for the Diffie-Hellmann
method, but it does so in a signed certificate so-called SSL public key certificate.
That is an electronic document which uses a digital signature to bind a public key
with an identity. The signature in a certificate is an attestation by the certificate
signer (issuer) that the identity information and the public key belong together.
A client (e.g. a web-browser) then verifies the signature of that certificate by the
signature decryption key of the signer (issuer), who is called Certificate Authority
(CA) in a PKI. The signature decryption key is another public key and is not to mess
up with the signed public key inside the certificate. The issuer (CA) did encrypt the
signature with its private key of an asymmetric key pair. The client can decrypted
the signature with the public key of that asymmetric key pair. That’s the way an
asymmetric key pair works.

Figure 2: Asymmetric Encryption Keys

Large Random Number '

Key Generator !

—On

Public Key Private Key

S
L

Cipher

X3471 14570+, v b
hetnMPidE2"6% sk
?k307hFla.:7{

The story of SSL
This is the long
story...

The story of SSL
Thizs is the long

story...

So a client simply needs to know the public key of the issuer (CA) to be able to
decrypt it. To enable all clients to do so, the deployment of the public (signature

3

decryption) key of the root instance of a PKI is done during the installation of
the encryption software (e.g. OpenSSL or Firefox web-browser). For the Internet
community that root instance is the IPRA (Internet Policy Registration Authority).
A client can now verify the server’s public key by a certificate, signed by a CA. He
can further verify the CA’s public (signature decryption) key by the CA’s certificate
and so on. That loop goes up until a certificate is self-signed, meaning the issuer
(signer) is at the same time the holder of the public key inside. Then the root CA
is reached, e.g. the IPRA. That’s the way SSL clients are verifying public keys
provided by a server.

Although the man-in-the-middle attack can be overcome by PKI, there is now
another problem: it requires essentially trusting the instances that deploy certifi-
cates. If such an instance signs a faked certificate, then the method fails totally. So
all the PKI principle is fully based on trust.

2 How is a Public Key Infrastructure setup?

To sign SSL public key certificates Certificate Authorities (CA) are setup. The
IPRA (Internet Policy Registration Authority) acts as the root of the certification
hierarchy for the Internet community. The IPRA signs the certificates of all PCAs
(Policy Certification Authorities), the PCAs sign the certificates of the CAs and the
CAs sign certificates of users (servers).

IPRA
| certifies
- +o———= +———— +-———= +
PCA PCA PCA PCA PCA
| certifies
o B +——— +
CA CA CA CA
| certifies
+-——— e +

The public (signature decryption) key to validate certificates signed by the IPRA
is made available by installing any SSL client software. So an SSL client will verify
the signature of the certificate provided by a contacted server, which is signed by
a CA. Then it will verify the CA’s certificate, which is signed by a PCA, and so
on. It will break that loop if it gets on to a certificate that is self-signed, meaning
the issuer is at the same time the holder of the public key inside. If that self-signed
certificate is installed as ’trusted’, the holder will be seen as the root CA and the
validation chain is completed. If not so, the validation chain is not completed and
so the server’s SSL public key certificate will not be trusted, as it has no trusted
signer. A special case is a server certificate, that is self-signed. Self-signed server
certificates should only be used in experimental environments. Local caching of
already validated certificates can be done and will speed up the validation process
significantly. If local caching is implemented, then this is called a User Authority

(UA).

3 How is the certificate created and verified?

Certificate issuer (CA, Certification Authority):

The CA (issuer) gets contacted by a server’s administrator, who wants to have a
certificate signed. He tells the server’s public key and the fully qualified domain
name (FQDN). The CA ensures that the binding is unique and that the server
behind the FQDN is really mapped to an IP address (DNS) that belongs to the
company running the server (holder). So a full identity record (FQDN and holder)
is build and the public key and the issuer and a few more information is appended.
All together that is called the data of the certificate. That data is pushed through an
hashing algorithm. The resulting hash then is encrypted using the private (signature
encryption) key of the CA’s asymmetric key pair. The resulting cipher is the
signature for that data. Finally the full blown and signed certificate to the server
administrator’s request is built:

SSL PUBLIC KEY CERTIFICATE:

fo———————————— +
| Identity (FQDN, Holder) I\
R + |DATA
| Public Key + Encryption Algo Info |-+
e +
| Issuer I/
- +

+--->| Signature + Hash Algo Info + Encryption Algo Info | |

| o + \

| \

| \

| - +

[[DATA | +

| - F——— +

|

| - +

| | Hashing |

| - F——— +

| \

| o + o +

| | Encryption |[<--—--| CA’s private key |

| R fo—— + oo +

| \

fomm Signature

That SSL public key certificate is send back to the administrator for installation
on the server machine.

Certificate user (SSL client):

The user, after he got presented a certificate by the server, will do a validation. To
do so he reads from the certificate what is the hash algorithm used for creating the
signature (hash algo info, e.g. ’shal’) and then he does the same as the CA already
did, meaning he hashes the data. Using the CA’s public (signature decryption) key
and the certificate’s info about how the signature is encrypted (encryption algo info,
e.g. 'RSA’), he decrypts the signature from the certificate and checks if the result is
equal to the calculated hash. If yes, the certificate is valid, meaning the public key
inside can be used to encrypt a message to the server behind the linked FQDN. For
doing so, the encryption algo info linked to the public key is to regard, meaning the
correct encryption algorithm (e.g. 'RSA’) is to use.

CERTIFICATE

F e +
| DATA e +
| o +
I t-—— + I
tomm + [(I
| SIGNATURE | \ \
tomm E— + [\

[[[

| Fomm + hash algo info | |

| | Hashing [<m—mmmmmm +

\ Fo— Fo—— +

[[
Fom e + \ enc algo info |
| Decryption [<= | +
I I [fomm +
| | <==== === ———————— | CA’s PUBLIC KEY |
Fom Fom— + \ Fm +

\ \

hash | | hash
[\
+-—> EQUAL? <-+
/\
/A
/ \
yes no
OK <—-+ +-—-> INVALID

All this only works, if the CA’s public (signature decryption) key can be trusted.
This is automatically the case if it is locally installed as ’trusted’ (local caching).
If not locally installed, it needs to be validated first. This is done the same way a
server’s certificate is validated, as a CA’s public (signature decryption) key is also
wrapped into a certificate. Doing so, the SSL client climbs up the PKI tree until it
finds a self-signed certificate, that is locally installed as 'trusted’ (= root CA). If the
validation chain is not ending at a trusted root CA, the server’s certificate will not
be verified using the CA’s public key, but it will be seen immediately as untrusted,
as the signer is not trusted.

4 How is the technical implementation done?

When an SSL client connects to an SSL server, the server presents a certificate, so
essentially an electronic piece of proof that the server is, who it claims to be. This
certificate is signed by a 'Certificate Authority’ (CA), usually a trusted third party
like "VeriSign’. The client hashes the data inside with the hash algorithm it knows
from the ’'hash algo info’. Then it checks out if it has installed a certificate under
the name ’'hash.0’. Installing a validated certificate under 'hash.0’ is the way local
caching of validated certificates is done. If 'hash.0’ is found, the client compares
that file’s content with the certificate provided by the server. If both are equal the
certificate is valid. If "hash.0’ is not found, it decrypts the signature by help of the
‘encryption algo info” and the signature decryption key, which is the issuer’s (CA’s)
public key. If the result is equal to the calculated hash, the certificate is valid, as
long as the CA’s public (signature decryption) key is trusted (meaning the CA’s
public key is installed in an appropriate 'hash.0’ file or it can be validated climbing
up the PKI tree). If the certificate is valid (pre-installed or signature ok) and the
current date is inside the validity period ("Validity’ field inside the certificate) and
the certificate is not blacklisted, then it is trusted. And then the client builds up
an encrypted connection to the server (the linked ’encryption algo info’ tells it the
correct encryption algorithm) using a secret key made of his private and the server’s
public key (= Diffie-Hellmann Key Agreement Method).

REMARK:

Not just SSL servers, but also SSL clients can present certificates. In
that case those are called ’client certificate’ or ’'peer certificate’.

It is still possible to manually validate a certificate by contacting the server’s
administrator by a phone call and asking him about the MD5 fingerprint of the
server’s public key. To get the MD5 fingerprint of the public key included in a
certificate, one can use following OpenSSL command (assuming the certificate is
stored in the file 'server.pem’):

$ openssl x509 -md5 -noout -fingerprint —-in server.pem
MD5 Fingerprint=88:D0:07:2E:59:0C:A9:74:3D:09:CA:32:1D:F9:A1:92

If the displayed value is equal to the one told by the server’s administrator, the
certificate can be stored as 'trusted’, meaning under ’hash.0’. The hash value can
be determined by OpenSSL like this:

$ openssl x509 -subject_hash -noout -in server.pem
9031871d

5 Hands-on guide using Linux and OpenSSL

ITU-T X.509 defines a framework for public key certificates for Public Key Infras-
tructures (PKI) and ITU-T X.690 defines a set of Basic Encoding Rules (BER) for
those certificates.

A certificate is stored in a format called DER (Distinguished Encoding Rules).
DER is a subset of BER (Basic Encoding Rules) in a way that it eliminates all of
the sender’s options from DER. Typically after the conversion into that format a
Base64 (RFC 3548) encoding is done, which leads to the final format, called PEM
(Privacy Enhanced Mail):

- Country Code (LU, DE, FR, US, GB, ...), C
- State or Province Name, ST

- City or Locality Name, L

- Organization Name, O

- Organizational Unit Name, OU

— Common Name (FQDN), CN

+-->| DER encoder |-->| Base64 encoder |--> PEM file
Fom + Fom e + (= Certificate)

The actual PEM payload is put in between 2 delimiters (2 lines which tell the
beginning and the end of the certificate), e.g. in a file 'server.pem’:

cat server.pem

MIIDEzCCAnwCCQCrkMTpAcMgcTANBgkghkiGOwOBAQUFADCBzTELMAKGAIUEBhMC
WFgxKJAOBgNVBAGTIVROZXJI1IGlzIG5vIHN1Y2ggdGhpbmcgb3V0c21kZSBVUZET
MBEGA1UEBxMKRXZ1cnl3aGVyZTEOMAWGA1UEChMFTONPUOExPDA6BgNVBAsTMO 9m
ZmljZSBmb3IgQ29tcGxpY2F0aWouIGoOmIE90aGVyd21zZSBTaWlwbGUgQWZmYWly
czERMA8GALUEAXMIbGFtcGlhaW4xHDAaBgkghkiGI9wOBCQEWDXJVvb3RAbLGFtcGlh
aW4wHhcNMDkxMJEWMDKkwNTAOWhcNMTAWMTASMDkwNTAOWJCBzTELMAKGA1UEBhMC
WEgxKJjAOBgNVBAGTIVROZXJ1IGlzIG5vIHN1Y2ggdGhpbmecgb3V0c21kZSBVUZET
MBEGA1UEBxMKRXZ1cnl3aGVyZTEOMAWGALIUEChMFTONPUOExPDA6BgNVBAsTMO 9m
ZmljZSBnb3IgQ29t cGxpY2F0aWouIGImIE90aGVyd21zZSBTaWlwbGUgQWZmYWly
czERMA8GALIUEAXMIbGFtcGlhaW4xHDAaBgkghkiGIwOBCQEWDXJVvb3RAbGFtcGlh
aW4wgZ8wDQYJKoZIhvcNAQEBBQADgYO0AMIGJAOGBAIfmglA2ndYCaBg4IOCwemoH
u82tw82nzz2cQ2jjIwkIiF4aTZTdYQ+2zA6/VRtuSnHX4YBr2eix9aAgPo6LY6x5xR
1bpX JMMUWZWSNVD jIJDBBgNJaK15T+6108P42gPyoyNCOHe 0Wt ThdYdiWEMGloyUU
v+kMDDUVJLXP+fCAtUINAgGMBAAEWDQYJK0oZIhvcNAQEFBQADgYEACGS5eCgw/4wE j
LgG9DaKvLi5KMt 9OKIS5K+FrvpD2w3ItNusgzZUF/E7CSJ1z1A/I1hHnXMudzVdNbm
XaFMFP+3jwG2Icf2JpJU+7fDuzVMfZAXk1n20XtplONxJuAs8DAGOAXHhBiDKkag
cviDz2IdKilOd+vd6ffcal33SX6w+d0O4=

So this is all following exactly the ideas mentioned in the chapters above. The
identity is not stored using the original DER format, but Base64 coded. This is
not a secure encryption, as it can be decoded with any standard Base64 decoder
(e.g. http://base64decode.org/), but is is a pure 7 bit ASCII representation of the
certificate, that will be handled well by every text processor.

REMARKS:

1.) Other delimiter lines will also be handled well:

RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:97:6:ab:50:36:9d:d6:02:68:18:38:20:e0:b0:
7a:6a:07:bb:cd:ad:c3:cd:a7:cd:97:10:da:38:c8:
c2:42:22:17:86:93:65:37:58:43:ec:c0:eb:fb:dl:
b6:ed4:a7:1d:7e:18:06:bd:9e:8b:1f:5a:02:a3:e8:
eB8:b6:3a:¢c7:9c:51:95:ba:57:8c:c3:14:c1:95:92:
9d:50:e3:24:30:41:80:d2:5a:2b:5e:53:fb:a9:4e:
f0:fe:36:80:fc:a8:c8:d0:8e:1d:ed:16:05:38:5d:
61:d8:96:10:cl:a5:a3:25:14:bf:e9:0c:0c:35:15:
24:05:cf:£9:£f0:80:b5:4d:4d

Exponent: 65537 (0x10001)

2.) To manually import an SSL certificate from a server, say ’'host.com’:
openssl s_client -connect host.com:443 | tee ./server.log
QUIT<RETURN>
Remove everything before the line ’'BEGIN ... CERTIFICATE’.
If after that the line 'END ... CERTIFICATE’ there is Diffie-Hellman
parameters appended (/----—- BEGIN DH PARAMETERS———---— "), then remove
everything after the line '-—---—- END DH PARAMETERS--—-—-— ’, else just
remove everything after the line "END ... CERTIFICATE’:
cp ./server.log ./server.pem
vi ./server.pem
————— BEGIN CERTIFICATE-———-
————— END CERTIFICATE-———-—
77777 BEGIN DH PARAMETERS————--— \
e |-=> OPTIONAL
————— END DH PARAMETERS————-— /
3.) To manually generate a most simple self-signed certificate ’server.pem’
for the FODN ’'myhost.domain’ :
cd /etc/ssl/certs/
openssl req —-new -x509 -days 365 -nodes \
—out server.pem -keyout server.pem
Country Name (2 letter code) [AU]:US<RETURN>
State or Province Name (full name) [Some-State] :Nevada<RETURN>
Locality Name (eg, city) []:<RETURN>
Organization Name (eg, company) [Internet Widgits Pty Ltd]:<RETURN>
Organizational Unit Name (eg, section) []:<RETURN>
Common Name (eg, YOUR name) []:myhost.domain<RETURN>
Email Address []:<RETURN>
To append Diffie-Hellman parameters:
openssl gendh 512 >> server.pem
The DER format defines several data fields like
- Version:
- Serial Number:
- Signature Algorithm:
- Issuer: C=XX, ST=..., L=..., O=..., OU=..., CN=... <== ISSUER’s ID
- Validity: Not Before: ..., Not After:
- Subject: C=XX, ST=..., L=..., O=..., OU=..., CN=FQDN <== HOLDER’s ID
- Subject Public Key Info: ... <== HOLDER’s PubKey
Public Key Algorithm: rsaEncryption <== enc algo info

followed by the ISSUER’s signature:

Signature Algorithm: shalWithRSAEncryption <== hash & enc algo info
08:6e:5e:0a:0c:3f:e3:01:23:2e:al:bd:0d:a2:af:2e:2e:4a:
32:df:4e:28:9e:4a:f8:5a:ef:a4:3d:b0:dc:8b:4d:ba:c8:19:
50:5f:c4:ec:24:89:d7:39:40:£fc:8d:61:1e:75:cc:b9%:dc:d5:
74:d6:e6:5d:al:4c:14:f£:07:8£:01:b6:21:c7:£6:26:92:54:
fb:b7:c3:b9:95:4¢c:7d:90:17:92:59:f6:al:7b:69:d4:e3:71:
26:e0:2c:£0:30:06:38:05:¢c7:84:18:83:2a:46:a0:72:£8:83:
cf:62:1d:2a:29:4e:77:eb:dd:e9:f7:dc:6b:7d:d2:5f:ac:3e:

74 :ee

All this can be retrieved after decoding

PEM file —--—->| Base64 decoder |-->| DER decoder |--> certificate text
(Certificate) +-———————————————~ + tomm +

using following OpenSSL command:

$ openssl x509 —-inform PEM —-in server.pem -text -noout

To make OpenSSL doing a full blown verification of a certificate:

$ openssl verify server.pem
server.pem: OK

Another way to validate is the manual validation by the fingerprint. To get the
MD?5 fingerprint of the contained public key:

$ openssl x509 -md5 -noout -fingerprint —-in server.pem
MD5 Fingerprint=88:D0:07:2E:59:0C:A9:74:3D:09:CA:32:1D:F9:A1:92

After you need to call the holder and ask him to tell you the fingerprint on the
phone. For that he will need to do the same manual validation as you, but locally
on the server machine.

'l Only if you got the fingerprint from a trusted source !!!
'l you can go ahead installing the certificate [

If the certificate is a trusted one, then install it. This is done by calculating a hash
over the subject field (this is the identification of the holder of the public key inside):

$ openssl x509 -subject_hash —-noout -in server.pem
9031871d

Then the PEM file is copied to /etc/ssl/certs/

cp ./server.pem /etc/ssl/certs/

and a symbolic link "hash.0" is created under /etc/ssl/certs/:

openssl x509 —-subject_hash —-in server.pem -noout | tee /tmp/hash
1n -s /etc/ssl/certs/server.pem /etc/ssl/certs/‘cat /tmp/hash‘.0

To be sure everything went fine, the installed certificates can be verified again:

$ openssl verify /etc/ssl/certs/‘cat /tmp/hash'.0

10

6 Summary

After all the things mentioned above, it should be clear, that the SSL communi-
cation encryption is identical with the one used by SSH, SCP and SFTP. So all
this methods use a secret key for encrypting/decrypting the data transmitted over
the network, which is negotiated using the Diffie-Hellmann Key Agreement Method.
The difference is, that SSL patches an FQDN to the public key and gets it
signed from a trusted third party, a so-called Certificate Authority (CA). So
SSL servers offer their public key wrapped into an SSL public key certificate.

Figure 3: SSL Keys and the Diffie-Hellmann Key Agreement Method
Client Server

Random MNumher Randam Funh er

v Y

i

Public Key Generator

v

Public Key

‘ Secret Key Cenerator Belongs to:
FODN
Signed: CA

Secret key

Be aware that there is 2 kind of public keys in the game. The server’s
public keys are wrapped into SSL public key certificates and they are used to
build the secret encryption/decryption key for the network communication. The
CA'’s public keys are also wrapped into public key certificates, but they are used
to directly decrypt the signatures of certificates. So with those public keys a server’s
public key certificate or another CA’s public key certificate can be validated.

11

Figure 4: SSL Public Key Certificate

CA

User ——

\ KeyGe'nrratDr
Privateﬂ
O« x—0 =0

Public
DecrypionKey DecryptionKey Encryption Key
Data
The public key k The public key k Data
belongs to the belongs to the
FODN name FODN name

<3 EnMAt 11 AS Tt v
|bhOPid@27: 7 {6%s
E?k30%hFla.

=

| HasHvaruE |

HASH VALUE |

v

EQUAL? == 0K .
= TItnMa~1145° i+, v |Signature
* Ibh9Pid@Z7: T{6%s
‘ HaSH VALUE ‘ E7k307hFla.

Hashing

12

